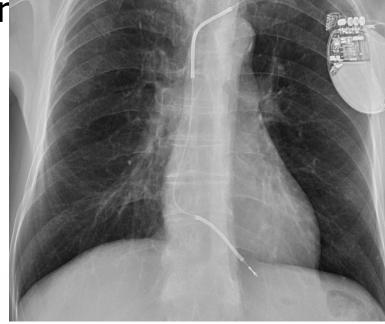


Advancing S-ICD through clinical evidence & contemporary implant management

Kyungpook National University Hospital Bae Myung Hwan

Korean Heart Rhythm Society COI Disclosure


Myung Hwan Bae

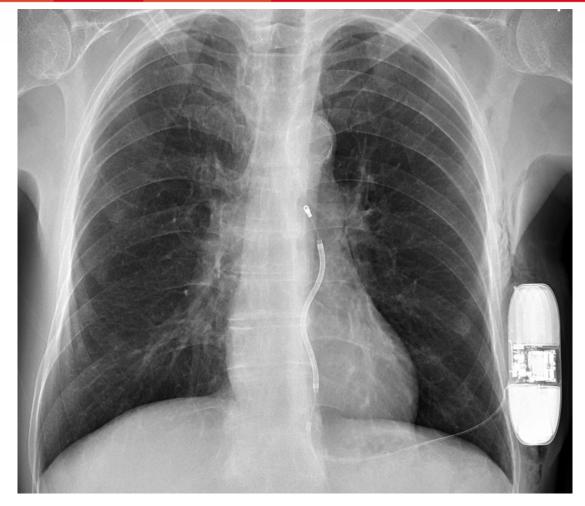
The authors have no financial conflicts of interest to disclose concerning the presentation

Case

- M/65
- Sudden cardiac arrest d/t ventricular fibrillation
- HTN/DM/dyslipidemia (+/+/+), CVA
- CAG: RCA CTO, proximal LAD 50% stenosis
- 2D-UCG: LVEF 34%, RCA ter abnormality
- TV-ICD insertion

• 3 month later

HbA1c 14.%→11.8%

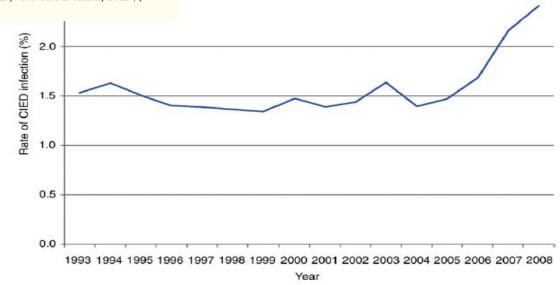


ICD removal

KNUH 23 경북대학교병원

• S-ICD implantation

KNUH 3 경북대학교병원


CLINICAL RESEARCH

Heart Rhythm Disorders

16-Year Trends in the Infection Burden for Pacemakers and Implantable Cardioverter-Defibrillators in the United States

1993 to 2008

Arnold J. Greenspon, MD,* Jasmine D. Patel, PHD,†‡ Edmund Lau, MS,†‡ Jorge A. Ochoa, PHD,‡ Daniel R. Frisch, MD,* Reginald T. Ho, MD,* Behzad B. Pavri, MD,* Steven M. Kurtz, PHD†‡ *Philadelphia, Pennsylvania*

Figure 3 Rate of CIED Infection

The annual rate of cardiac implantable electrophysiological device (CIED) infection remained fairly constant until 2004 when there was a marked incre The infection rate increased from 1.53% in 2004 to 2.41% in 2008 (p < 0.001).

 Despite technology advances, TV- ICD infections are increasing

KNUH@경북대학교병원

Greenspon et al. JACC 2011;58:1001-1006.

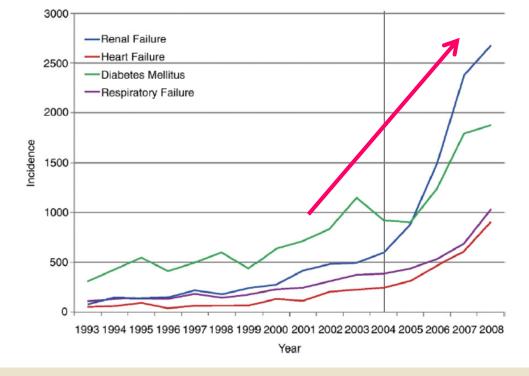
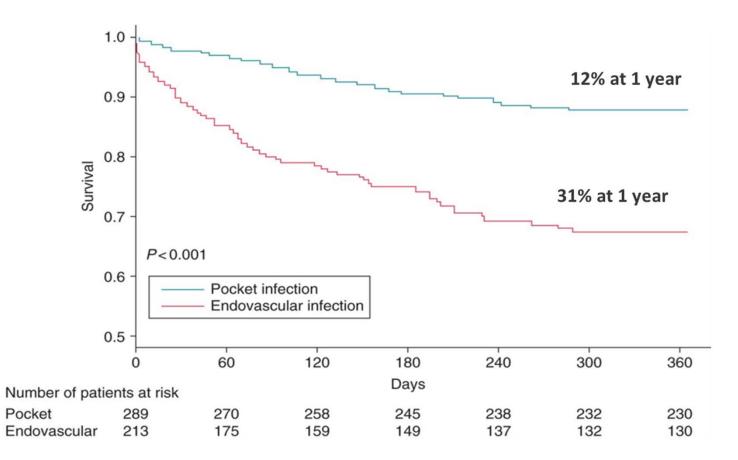


Figure 5 Incidence of Comorbidities in Patients With CIED Infection

The incidence of 4 major comorbidities (renal failure, respiratory failure, heart failure, and diabetes) remained fairly constant until 2004 when a marked increase was observed. This paralleled both the observed increase in implantable cardioverter-defibrillator implantation and the increased infection rate. CIED = cardiac implantable electrophysiological device.

 One theory is that patients with more comorbidities associated with infection are being implanted with ICD


KNUH@ 경북대학교병원

Greenspon et al. JACC 2011;58:1001-1006.

KNUH @ 경북대학교병원

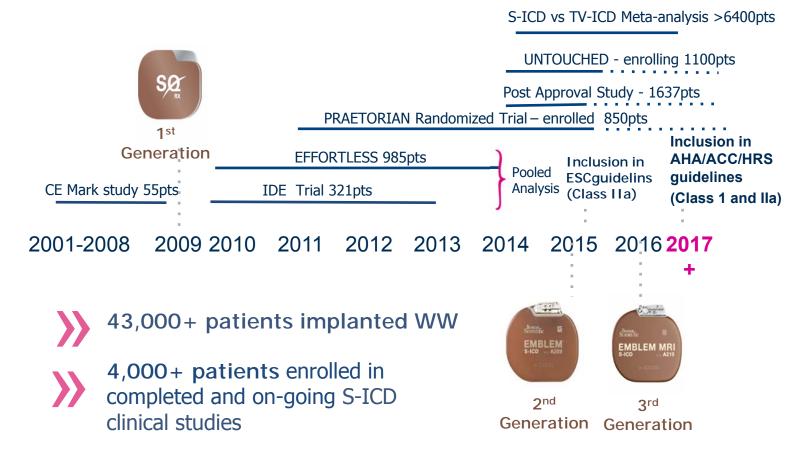
• The mortality rate: 12-31% mortality rate at 1 year

Tarakji KG, et al. Euoapce 2014;16:1490-1495.

Current guidelines

	Recommendations for Subcutaneous Implantable Cardioverter-Defibrillator								
References that support the recommendations are summarized in Online Data Supplement 55.									
COR	LOE	Recommendations							
I	B-NR	1. In patients who meet criteria for an ICD who have inadequate vascular access or are at high risk for infection, and in whom pacing for bradycardia or VT termination or as part of CRT is neither needed nor anticipated, a subcutaneous implantable cardioverter-defibrillator is recommended (1-5).							
lla	B-NR	 In patients who meet indication for an ICD, implantation of a subcutaneous implantable cardioverter-defibrillator is reasonable if pacing for bradycardia or VT termination or as part of CRT is neither needed nor anticipated (1-4). 							
III: Harm	B-NR	3. In patients with an indication for bradycardia pacing or CRT, or for whom antitachycardia pacing for VT termination is required, a subcutaneous implantable cardioverter-defibrillator should not be implanted (1-4, 6-8).							

 The risk of infection appears to be lower with S-ICD than with TV-ICD. Therefore, a S-ICD may be preferred in patients who are at high risk of infection, such as those with a prior device infection, ESRD, diabetes mellitus, or who are chronically immunosuppressed.


KNUH 🞯 경북대학교병원

2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death

The S-ICD Journey

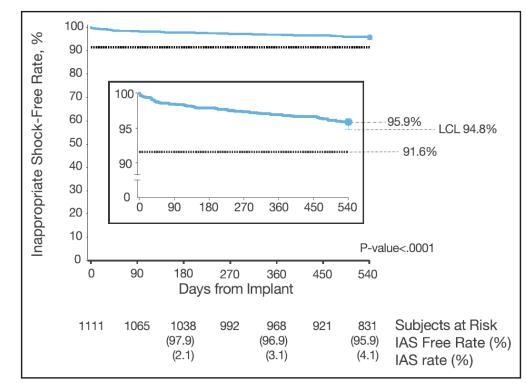
Over 15 years of clinical data and experience with S-ICD technology

KNUH @ 경북대학교병원

S-ICD and TV-ICD efficacy

	Patients number	Shock efficacy
IDE and EFFORTLESS (S-ICD)	882	98.2%
SIMPLE (DFT group) (TV-ICD)	1,242	95.7%
SIMPLE (no DFT group) (TV-ICD)	1,236	94.8%
ALTITUDE first shock study (TV-ICD)	2,000	99.8%
LESS (TV-ICD)	636	97.3%

Burke, M.C. et al. J Am Coll Cardiol . 2015;65:1605–15. Healey, J, et al. The Lancet. 2015;385:785-91 Cha YM et al. Heart Rhythm 2013;10:702–708. Gold MR et al. Circulation 2002;105:2043-2048.



UNTOUCHED trial

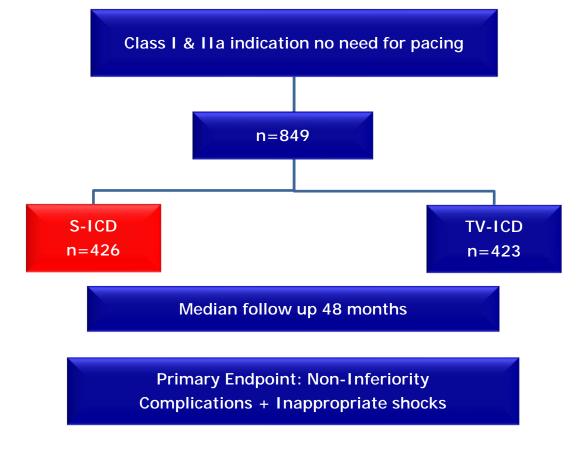
Primary Results From the Understanding Outcomes With the S-ICD in Primary Prevention Patients With Low Ejection Fraction Trial

- Primary prevention, LVEF ≤35%,1,111 patients, generation 2 or 3 S-ICD
- Primary end point: inappropriate shock-free rate

KNUH 3 경북대학교병원

Gold et al. Circulation. 2021;143:7–17.

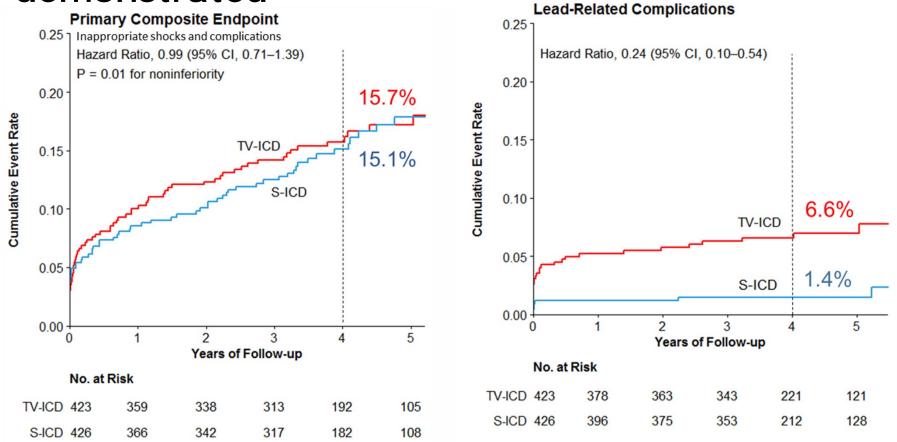
Predictors of inappropriate shocks


Multivariable			
Variable	Hazard Ratio		P-value
History of AF	4.24 (1.95-9.25)		.0003
Black Race	0.45 (0.17-1.20)		.11
Ischemic etiology	0.43 (0.21-0.87)		.019
LVEF, %*	0.94 (0.89-1.00)	•	.042
Two-incision technique	3.47 (1.33-9.06)	⊢	.011
DFT performed within first 30 days	3.00 (0.88-10.23)		.080
Gen 3 device	0.47 (0.24-0.93)	⊢	.031
Prescribed programming throughout study	0.27 (0.06-1.16)	⊢	.078
n=1040	0.01	0.1 1 10	100
		Fewer IAS More IAS	6

Gold et al. Circulation. 2021;143:7–17.

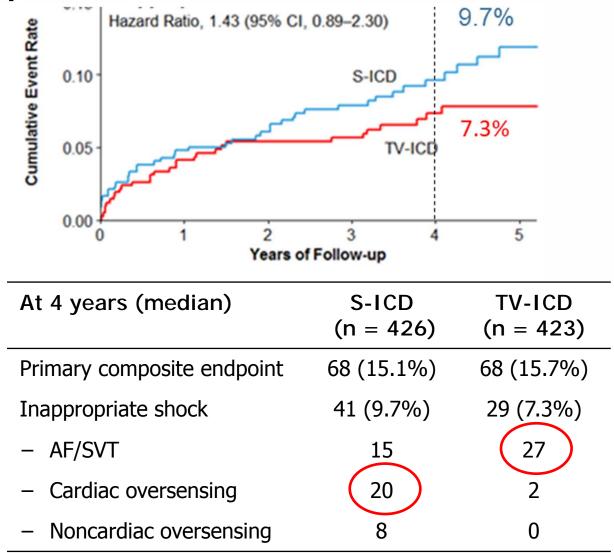
Subcutaneous or Transvenous Defibrillator Therapy

• Prospective, randomized


- Mean age: 63 yrs
- Ischemic CMP: 69%
- 2nd prevention: 19%
- LVEF 30%

Knops RE et al. N Engl J Med 2020; 383:526-536

KNUH @ 경북대학교병원


Primary Outcome: Non-inferiority demonstrated

Knops RE et al. N Engl J Med 2020; 383:526-536

Inappropriate shock

KNUH @ 경북대학교병원

Knops RE et al. N Engl J Med 2020; 383:526-536

Meta-analysis

Subcutaneous versus transvenous implantable defibrillator: An updated meta-analysis

Roberto Rordorf, MD,^{*1} Matteo Casula, MD,^{*†1} Laura Pezza, MD,^{*†} Federico Fortuni, MD,[†] Antonio Sanzo, MD,^{*} Simone Savastano, MD,^{*} Alessandro Vicentini, MD^{*}

- 13 studies, 9,073 patients
- Primary outcomes
 - clinically relevant complications

(lead, pocket, major procedural complications, device-related infections)

- Inappropriate shocks

Meta-analysis

A Lead-related complications

	S-IC	D	TV-IC	D		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Randorn, 95% Cl	M-H, Randorn, 95% Cl
Boveda, 2018	0	31	0	31		Not estimable	
Brouwer, 2016	1	140	17	140	14.3%	0.05 [0.01, 0.40]	
Brouwer, 2018	1	391	9	391	13.8%	0.11 [0.01, 0.86]	
Friedman, 2016	2	1920	16	3840	27.3%	0.25 [0.06, 1.08]	
Honarbakhsh, 2017	0	69	7	69	7.1%	0.06 [0.00, 1.07]	
Kobe, 2013	0	69	2	69	6.3%	0.19 [0.01, 4.12]	
Liang, 2019	1	86	3	86	11.3%	0.33 [0.03, 3.19]	
Pettit, 2013	0	9	2	8	5.8%	0.14 [0.01, 3.34]	
Quast, 2018	0	35	10	46	7.2%	0.05 [0.00, 0.87]	
Viani, 2019	0	90	4	139	6.9%	0.17 [0.01, 3.13]	
Total (95% CI)		2840		4819	100.0%	0.14 [0.06, 0.29]	(+)
Total events	5		70				
Heterogeneity: Tau ² =	0.00; Chi?	= 3.08	, df = 8 (F	P = 0.93	3); F = 0%	, t	0.001 0.1 1 10 1000
Test for overall effect 2	Z = 5.08 (P < 0.0	0001)			l.	0.001 0.1 1 10 1000 Favours [S-ICD] Favours [TV-ICD]

B Major procedural complications

KNUH 경북대학교병원

	S-IC	D	TV-IC	D		Odds Ratio	Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Rand	orn, 95% Cl	Study or
Boveda, 2018	0	31	0	31		Not estimable			Boveda,
Brouwer, 2016	0	140	0	140		Not estimable			Brouwer
Brouwer, 2018	0	391	2	391	14.3%	0.20 [0.01, 4.16]		<u> </u>	Brouwer
Friedman, 2016	1	1920	14	3840	32.2%	0.14 [0.02, 1.08]		+	Friedma
Honarbakhsh, 2017	0	69	1	69	12.8%	0.33 [0.01, 8.21]		<u> </u>	Honarba
Knops, 2020	0	426	6	423	16.0%	0.08 [0.00, 1.34]		+	Knops,
Kobe, 2013	0	69	1	69	12.8%	0.33 [0.01, 8.21]		<u> </u>	Kobe, 21
Lenarczyk, 2018	0	76	0	307		Not estimable			Lenarcz
Pettit, 2013	0	9	1	8	11.9%	0.26 [0.01, 7.43]			Liang, 2
Quast, 2018	0	35	0	46		Not estimable	\frown		Mithani, Pettit, 20
									Quast 2
Total (95% CI)		3166		5324	100.0%	0.18 [0.06, 0.57]			Viani, 20
Total events	1		25						viain, 20
Heterogeneity: Tau* =	0.00; Chi	= 0.76	i, df = 5 (f	P = 0.9	8); P= 0%		1000 01	the set	Total (9
Test for overall effect.	Z= 2.92 (P = 0.0	03)				0.002 0.1	i 10 500 Favours (TV-ICD)	Total ev
									Heterog
					Fa	vors (S		(TV-ICD)	Testfor
					1 a	VUI 3 (J			

C Pocket complications

	S-IC	D	TV-IC	D		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Boveda, 2018	0	31	2	31	2.8%	0.19 [0.01, 4.07]	
Brouwer, 2016	3	140	2	140	8.2%	1.51 [0.25, 9.18]	
Brouwer, 2018	14	391	7	391	31.5%	2.04 [0.81, 5.10]	+
Friedman, 2016	7	1920	3	3840	14.5%	4.68 [1.21, 18.12]	
Honarbakhsh, 2017	0	69	1	69	2.6%	0.33 [0.01, 8.21]	
Kobe, 2013	1	69	0	69	2.6%	3.04 [0.12, 76.02]	
Lenarczyk, 2018	2	76	4	307	9.0%	2.05 [0.37, 11.39]	
Liang, 2019	3	86	2	86	8.1%	1.52 [0.25, 9.32]	
Mithani, 2018	4	91	0	91	3.1%	9.41 [0.50, 177.39]	
Pettit, 2013	0	9	0	8		Not estimable	
Quast, 2018	4	35	0	46	3.0%	13.29 [0.69, 255.50]	
Viani, 2019	5	90	4	139	14.7%	1.99 [0.52, 7.60]	
Total (95% CI)		3007		5217	100.0%	2.18 [1.30, 3.66]	
Total events	43		25				
Heterogeneity: Tau* =	0.00; Chi	= 7.79	df=10	(P = 0.6)	55); I* = 0*	16	0.005 0.1 1 10 200
Test for overall effect.	Z = 2.97 (P = 0.0	03)				0.005 0.1 1 10 200 Favours [S-ICD] Favours [TV-ICD]

D Device-related infection

	S-ICI	D	TV-IC	D		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Boveda, 2018	0	31	1	31	3.0%	0.32 [0.01, 8.23]	
Brouwer, 2016	5	140	4	140	17.2%	1.26 (0.33, 4.79)	
Brouwer, 2018	10	391	2	391	13.3%	5.10 [1.11, 23.45]	· · · · ·
Friedman, 2016	1	1920	2	3840	5.5%	1.00 [0.09, 11.04]	
Honarbakhsh, 2017	1	69	4	69	6.4%	0.24 [0.03, 2.19]	
Knops, 2020	4	426	8	423	20.9%	0.49 (0.15, 1.65)	
Kobe, 2013	1	69	1	69	4.0%	1.00 [0.06, 16.32]	
Lenarczyk, 2018	1	76	1	307	4.1%	4.08 [0.25, 65.98]	
Liang, 2019	1	86	2	86	5.4%	0.49 [0.04, 5.55]	
Mithani, 2018	3	91	1	91	6.0%	3.07 [0.31, 30.06]	
Pettit, 2013	0	9	1	8	2.8%	0.26 [0.01, 7.43]	
Quast, 2018	3	35	1	46	5.9%	4.22 [0.42, 42.42]	
Viani, 2019	1	90	2	139	5.4%	0.77 [0.07, 8.61]	
Total (95% CI)		3433		5640	100.0%	1.11 [0.63, 1.95]	↓
Total events	31		30				
Heterogeneity: Tau ² =	0.02; Chi ²	= 12.1	8, df = 12	2 (P = 0	43); P= 1	%	0.01 0.1 1 10 100
Test for overall effect.							0.01 0.1 1 10 100 Favours [S-ICD] Favours [TV-ICD]

Rordorf R et al. Heart Rhythm 2021;18:382–391

Meta-analysis

A Inappropriate shock

	S-IC	D	TV-K	D.		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Boveda, 2018	0	31	0	31		Not estimable	
Brouwer, 2016	20	140	22	140	22.5%	0.89 [0.46, 1.72]	
Brouwer, 2018	3	391	2	391	4.7%	1.50 [0.25, 9.05]	
Honarbakhsh, 2017	3	69	6	69	7.1%	0.48 [0.11, 1.99]	
Knops, 2020	41	426	29	423	30.1%	1.45 [0.88, 2.38]	+
Kobe, 2013	5	69	3	69	6.7%	1.72 [0.39, 7.49]	
Lenarczyk, 2018	0	76	1	307	1.6%	1.34 [0.05, 33.11]	
Liang, 2019	8	86	3	86	7.7%	2.84 [0.73, 11.08]	
Mithani, 2018	1	91	2	91	2.7%	0.49 [0.04, 5.55]	
Pettit, 2013	1	9	3	8	2.5%	0.21 [0.02, 2.60]	
Quast, 2018	3	35	11	46	7.7%	0.30 (0.08, 1.17)	
Viani, 2019	5	90	3	139	6.8%	2.67 [0.62, 11.45]	
Total (95% CI)		1513		1800	100.0%	1.09 [0.73, 1.64]	+
Total events	90		85			1000 00000 00000	
Heterogeneity: Tau* =	0.08; Chi	= 12.1	9, df = 10	0 (P = 0)	27); 1"=1	18%	at at the sta
Test for overall effect	Z=0.43 (P = 0.6	6)				0.01 0.1 1 10 100 Favours [S-ICD] Favours [TV-ICD]

B Inappropriate shock due to oversensing

KNUH @ 경북대학교병원

	S-IC	D	TV-IC	D		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Brouwer, 2016	17	140	1	140	12.4%	19.21 [2.52, 146.47]	
Brouwer, 2018	3	391	1	391	11.2%	3.02 [0.31, 29.12]	
Honarbakhsh, 2017	3	69	0	69	8.2%	7.32 [0.37, 144.35]	
Knops, 2020	32	426	2	423	15.9%	17.10 [4.07, 71.81]	
Kobe, 2013	5	69	1	69	11.7%	5.31 [0.60, 46.71]	
Liang, 2019	8	86	0	86	8.7%	18.73 [1.06, 329.88]	
Mithani, 2018	1	91	0	91	7.5%	3.03 [0.12, 75.44]	
Pettit, 2013	1	9	1	8	8.4%	0.88 [0.05, 16.74]	
Quast, 2018	3	35	7	46	16.0%	0.52 [0.12, 2.18]	
Total (95% CI)		1316		1323	100.0%	4.60 [1.56, 13.53]	
Total events	73		13				
Heterogeneity: Tau ^a =	1.37; Chi ²	= 17.1	7, df = 8	(P = 0.1)	03); F= 5	3%	0.001 0.1 10 10
Test for overall effect.				A	2020-002-00		0.001 0.1 1 10 10 Favours [S-ICD] Favours [TV-ICD]

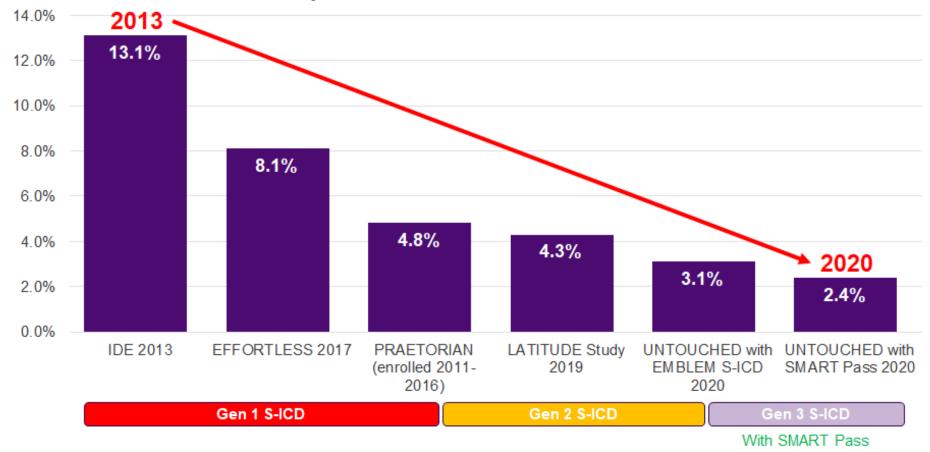
C Inappropriate shock due to SVT

	S-10	D	TV-IC	D		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Brouwer, 2016	3	140	21	140	19.5%	0.12 [0.04, 0.43]	
Brouwer, 2018	0	391	1	391	2.9%	0.33 [0.01, 8.19]	
Honarbakhsh, 2017	0	69	6	69	3.5%	0.07 [0.00, 1.27]	
Knops, 2020	11	426	27	423	58.1%	0.39 [0.19, 0.79]	
Kobe, 2013	0	69	2	69	3.2%	0.19 [0.01, 4.12]	
Liang, 2019	0	86	3	86	3.3%	0.14 [0.01, 2.71]	
Mithani, 2018	0	91	2	91	3.2%	0.20 [0.01, 4.13]	
Pettit, 2013	0	9	2	8	2.9%	0.14 [0.01, 3.34]	
Quast, 2018	0	35	4	46	3.4%	0.13 [0.01, 2.56]	
Total (95% CI)		1316		1323	100.0%	0.25 [0.15, 0.43]	
Total events	14		68				
Heterogeneity: Tau* =	0.00; Chi	= 4.09	, df = 8 (F	P = 0.85	5); 1" = 0%		
Test for overall effect	Z=4.96 (P < 0.0	0001)			0.0	01 0.1 1 10 1000 Favours [S-ICD] Favours (TV-ICD)

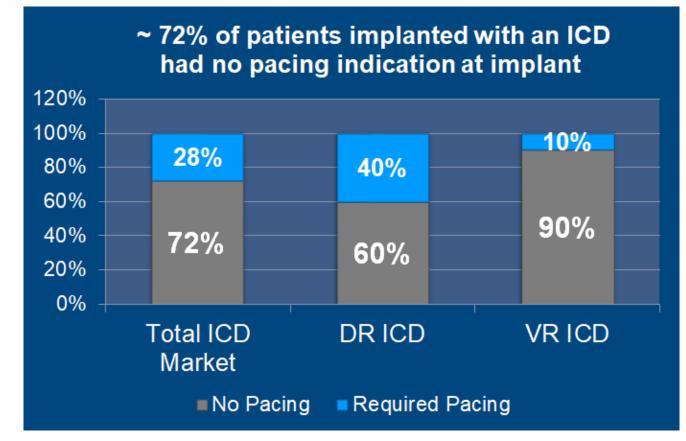
D Appropriate shock

	S-IC	D	TV-IC	D		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
Boyeda, 2018	2	31	0	31	2.1%	5.34 [0.25, 115.89]	
Brouwer, 2016	12	140	24	140	17.3%	0.45 [0.22, 0.95]	
Brouwer, 2018	39	391	54	391	24.3%	0.69 [0.45, 1.07]	
Honarbakhsh, 2017	3	69	4	69	6.9%	0.74 [0.16, 3.43]	
Knops, 2020	83	426	57	423	26.0%	1.55 [1.08, 2.24]	
Kobe, 2013	3	69	2	69	5.3%	1.52 [0.25, 9.41]	
Liang, 2019	1	86	4	86	3.8%	0.24 [0.03, 2.20]	
Mithani, 2018	1	91	0	91	1.9%	3.03 [0.12, 75.44]	
Pettit, 2013	2	9	1	8	2.8%	2.00 [0.15, 27.45]	
Quast, 2018	5	35	7	46	9.5%	0.93 [0.27, 3.22]	
Total (95% CI)		1347		1354	100.0%	0.91 [0.57, 1.44]	•
Total events	151		153				
Heterogeneity: Tau ² =	0.18; Chi	= 16.4	19, df = 9	(P = 0.0	06); I ² = 4	5%	have also be as
Test for overall effect				1010104			0.005 0.1 1 10 20 Favours (S-ICD) Favours (TV-ICD)

Favors (S-ICD) (TV-ICD)


Rordorf R et al. Heart Rhythm 2021;18:382–391

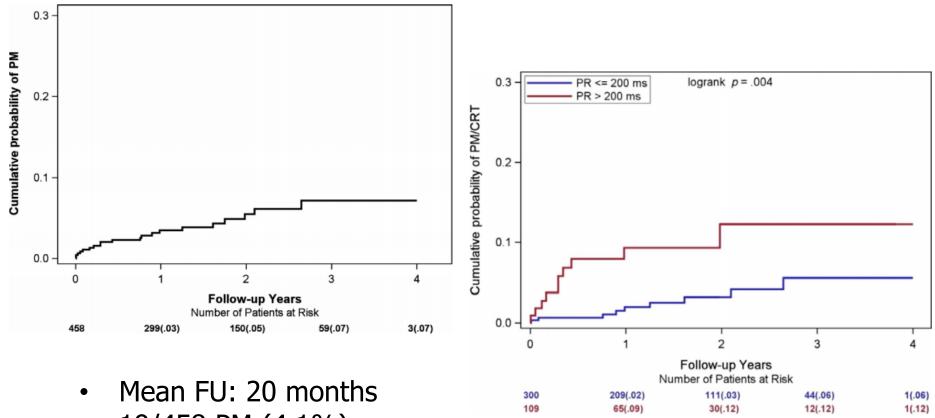
Inappropriate shock for S-ICD


Rate of IAS for S-ICD continues to decline

1-year Rate for IAS 2013-2020

KNUH 23 경북대학교병원

The need for brady pacing in ICD

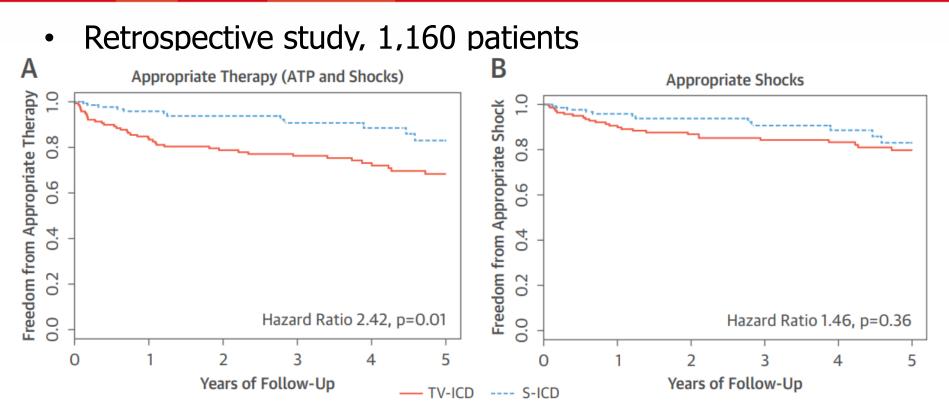

- While 60% of patients received a DR ICD, only 40% had a pacing indication at implant.
- ~90% of patients under 75 implanted with a VR ICD were programmed to VVI 40 of less

KNUH 2 경북대학교병원

Gasparini, et al. JACC: Clinical Electrophysiology, 2017

The need for brady pacing in ICD

MADIT-II trial


• 19/458 PM (4.1%)

KNUH @ 경북대학교병원

Ann Noninvasive Electrocardiol 2020;25: e12744

The need for ATP

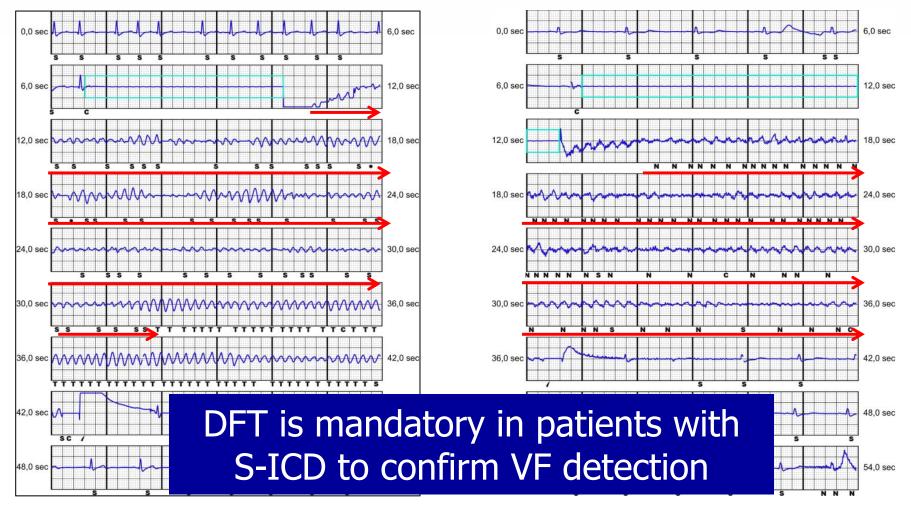
- ATP has been demonstrated to successfully terminate ~70 % of VT episodes, but, it did not result in fewer appropriate shocks
- SCD-HeFT ICD patients: monomorphic VT, 1.8% per year risk

KNUH@경북대학교병원 Brouwer, T.F., et al. J Am Coll Cardiol 2016;68:2047-2055. Poole, et al. Circulation:Arrhythmia and Electrophysciology 2013;6:12361245.

S-ICD in Korea: increasing but still low

- Concern about efficacy and safety
- Need for ATP (
- Need for bradycardia
- Defibrillation Threshold (DFT) Test ?

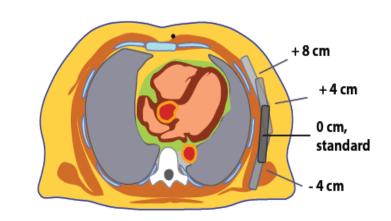
DFT test in S-ICD

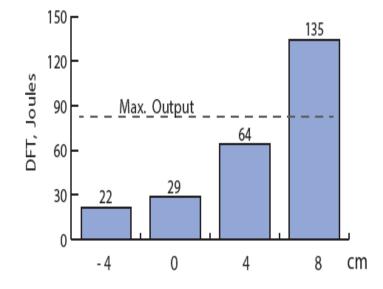


Defibrillation testing is mandatory in patients with subcutaneous implantable cardioverter-defibrillator to confirm appropriate ventricular fibrillation detection **O**

- Single center, 137 S-ICD patients
- VT induction: 133 (97%)
- Detection profiles
 - 1) optimal detection: n=39 (29%)
 - 2) undersensing with moderate prolongation of time to therapy (<18secs): n=68 (51%)
 - 3) undersensing with significant prolongation of time to therapy (>18secs): n=19 (14%)
 - 4) absence of therapy or prolonged time to therapy related to noise oversensing: n=7 (6%)

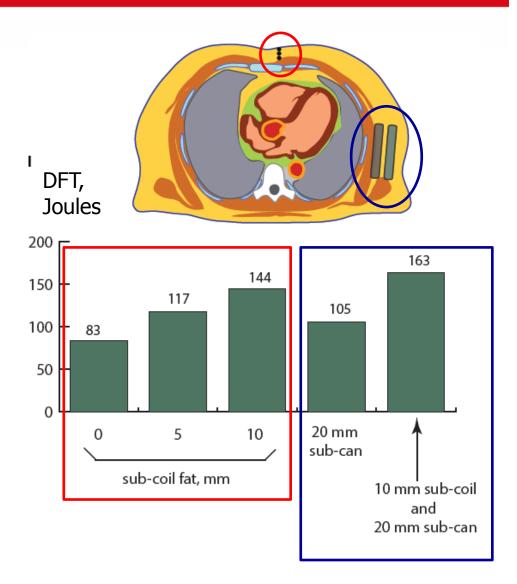
DFT test in S-ICD




• Delayed VF detection \rightarrow need to a different vector

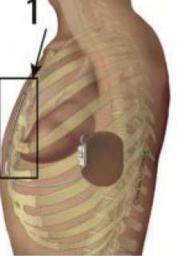
- Noise oversensing during VF
- No therapy

Determinants of S-ICD defibrillation efficacy


DFT versus Device AP-position

Anterior-Posterior Deviation from Standard Location

KNUH 2 경북대학교병원



KNUH 경북대학교병원

JACC Clin Electrophysiol. 2017;3:405-414.

PRAETORIAN score

Step 1)

Determine the number of coil widths of fat tissue between the **nearest** half of the S-ICD coil and the sternum or ribs.

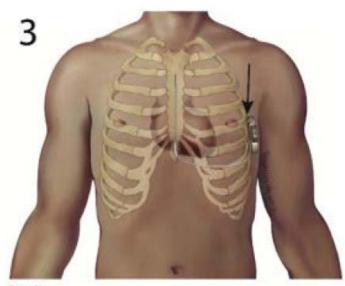
-40

= Final score

coil-width	30
coil-widths	60
coil-widths	90
coil-widths	150
	coil-widths coil-widths

Step 4)

PRAETORIAN score \ge 90: BMI \le 25 kg/m² BMI \ge 25 kg/m²


Step 2)

Determine the position of the S-ICD generator in relation to the mid-line (red line).

Generator is on or posterior of the mid-line x1 Entire generator is anterior of the mid-line x2 Entire generator is > 1/2 length anterior x4

> < 90 90 < 150

> > ≥ 150

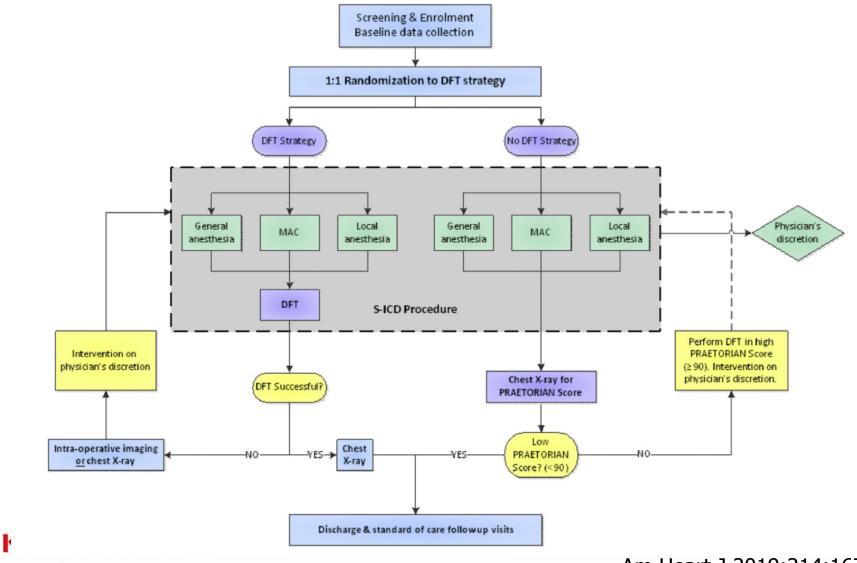
Step 3)

Determine the amount of fat tissue between the nearest point of the generator and the thoracic wall.

<	generator-width	x 1
21	generator-width	x 1.5

Final PRAETORIAN score

Low risk of conversion failure Intermediate risk of conversion failure High risk of conversion failure



Am Heart J 2019;214:167-74

Ongoing trial

PRAETORIAN-DFT trial (Prospective, randomized)

Am Heart J 2019;214:167-74

Summary

- S-ICD system and implant management have been evolving
- The efficacy and safety of S-ICD has been proven through several studies (randomized, real world, and meta-analysis).
- S-ICD: inadequate vascular access or are at high risk for infection (no need pacing, ATP, CRT).

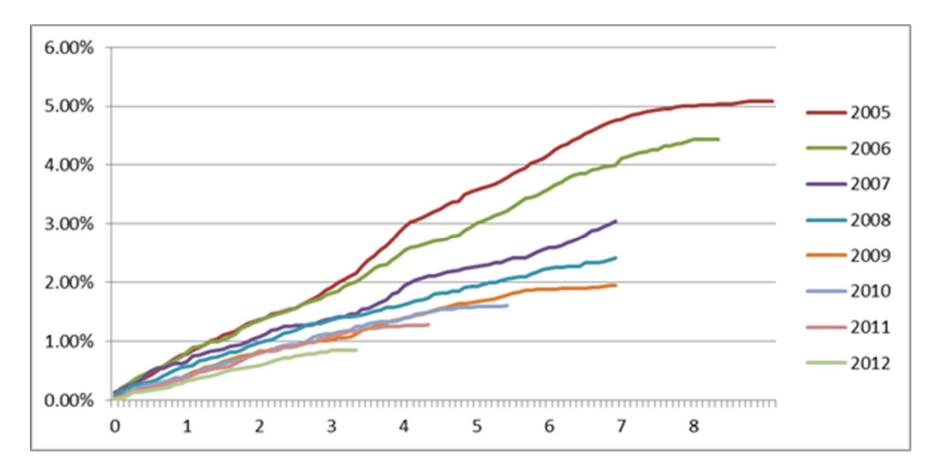
Thank you for your attention !!

Trends in Complications Related to Infection Indication for TV Lead Extraction

	With Device Infection								
Complications, %	2006	2007	2008	2009	2010	2011	2012	Overall	P Value
Mortality	4.5	3.1	3.8	3.6	4.1	3.2	3.5	3.6	0.1859
Any complications	7.3	6.5	9.1	8.6	11.2	10.5	9.9	9.2	< 0.001
Any complications and mortality	10.1	8.9	11.6	10.9	14.0	12.3	12.2	11.5	<0.001

Trends in Complications Related to Non-infection Indication for TV Lead Extraction

	Without Device Infection								
Complications, %	2006	2007	2008	2009	2010	2011	2012	Overall	P Value
Mortality	0.8	0.8	1.2	1.3	1.5	1.3	1.4	1.2	<0.001
Any complications	4.0	6.8	7.2	9.6	9.8	8.3	11.2	7.8	< 0.001
Any complications and mortality	4.3	7.2	8.0	10.2	10.4	8.9	11.9	8.4	< 0.001

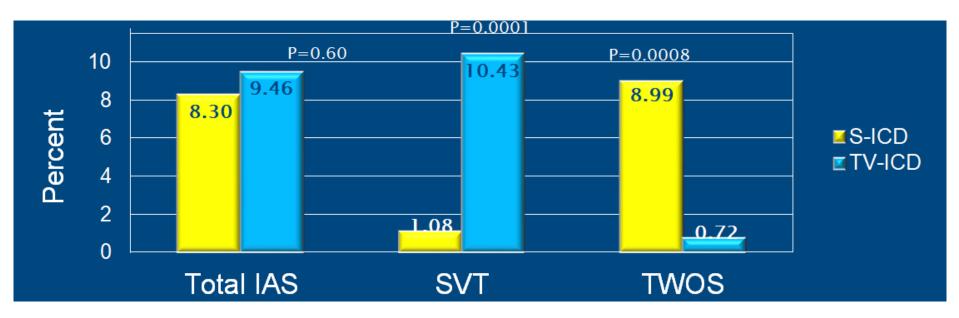

• In hospital mortality was 3.6% for those with infection versus 1.2% without infection (p<0.001).

Deschmuck et al. Circulation, 2015;132:2363-71

Demographics

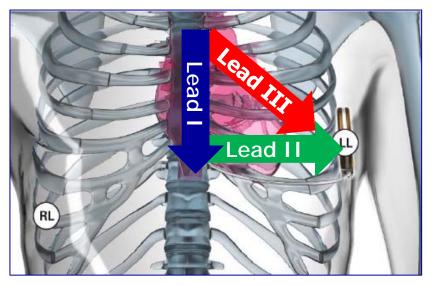
	S-ICD (n = 426)		TV-IC	D (n = 423)
Median age (IQR) – yr	63	(54 – 69)	64	(56 – 70)
Female sex – no. (%)	89	(20.9)	78	(18.4)
Diagnosis – no. (%)				
 Ischemic cardiomyopathy 	289	(67.8)	298	(70.4)
 Nonischemic cardiomyopathy 	99	(23.2)	98	(23.1)
– Other	38	(9.0)	27	(6.5)
Secondary prevention – no. (%)	80	(18.8)	84	(19.9)
Median ejection fraction (IQR) – %	30	(25 – 35)	30	(25 – 30)
Median BMI (IQR) – kg/m ²	27.0	(24.5 – 30.5)	27.9	(25.2 – 31.7)
NYHA class – no. (%)				
- Class I	144/423	(34.0)	136/421	(31.8)
- Class II	205/423	(48.5)	223/421	(53.0)
- Class III/IV	74/423	(17.5)	64/421	(15.2)

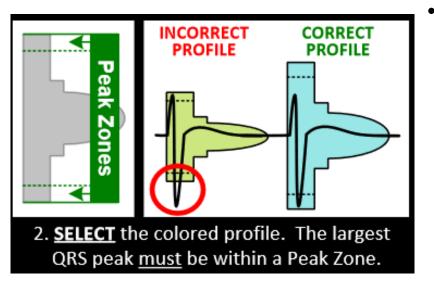
The need for brady pacing in ICD


• Only 4-5% of patients implanted with a VR ICD were upgraded to a DR ICD at 8 years following implant

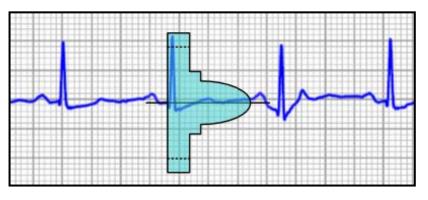
S-ICD in Korea: increasing but still low

- Concern about efficacy and safety
- Need for ATP
- Need for bradycardia
- Defibrillation Threshold (DFT) Test
- Unfamiliar implant technique


Meta-analysis (SAFETY)


Clinical outcomes: Inappropriate shocks

- Overall rate of inappropriate shocks: S-ICD = TV-ICD.
- SVT: TV-ICD > S-ICD.
- T-wave oversensing (TWOS): S-ICD > TV-ICD.


Patient screening

- Extended bipolar (Far-field sensing)
- Outside of heart
 - small R wave
 - cardiac axis affected by position or physiologic changes
- \rightarrow ECG screening necessary
 - At least one common ECG lead must be

deemed acceptable for all tested

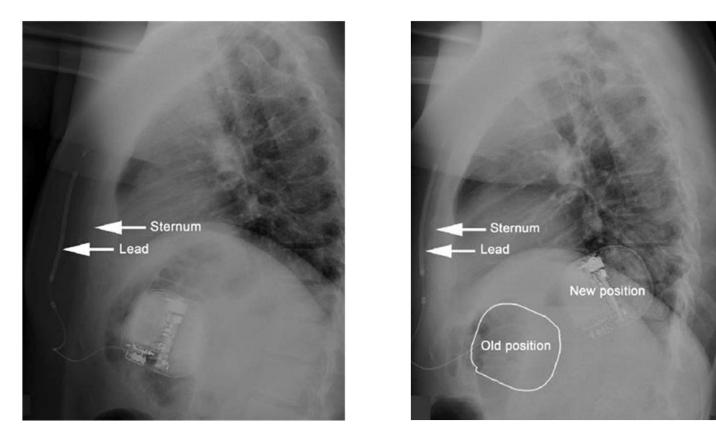
Manual screening tool

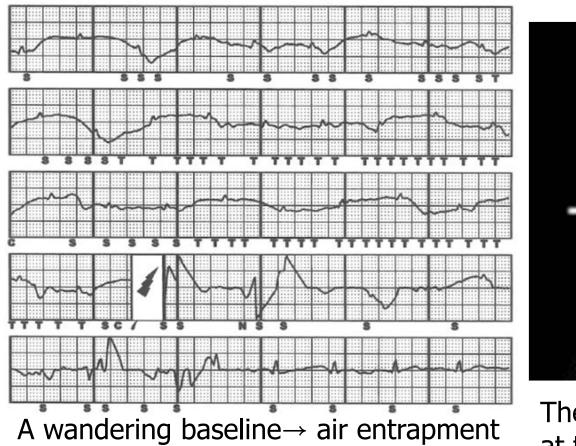
Automated screening tool

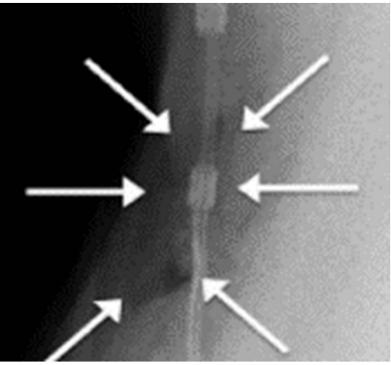
- Incorporation of vector select and digital filtering
 - better reflect S-ICD function
 - more tolerant of large T wave than manual

screening tool

- provide more consistent outcomes by removing


operator subjectivity


EMBLEM Automated Screening Tool is available through the Zoom Programmer (3120)


Failed DFT

If DFT fails, check PG and electrode positioning

Air entrapment

The x-ray shows trapped air at the proximal electrode

Zipse MM, et al. Circ Arrhythm Electrophysiol. 2014;7:768-770. Yap SC, et al. Heart Rhythm Case Rep. 2015;1:156–158.